Q1. The shortest distance between the lines $\frac{x-1}{z} = \frac{y-2}{z} = \frac{z+4}{z}$ and $\frac{x-3}{z} = \frac{y-3}{z} = \frac{z+5}{z}$ is

(a)
$$\frac{\sqrt{293}}{7}$$

(b) 0
(c) $\frac{7}{\sqrt{293}}$
(d) $\frac{7}{\sqrt{293}}$

- Q2. The value of λ , so that the vector $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + 3\hat{k}$ are perpendicular to each other, is:
 - (a) $\frac{5}{2}$
 - (b) $\frac{5}{4}$
 - (c) 5
 - $(d)\frac{7}{2}$

Q3. The value of $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x^5 + x^3 + x + 2) dx$ is:

- (a) 0
- (b) 2
- (c) 2π
- (d) π

Q4. The minimum value of $\left(x^2 + \frac{250}{x}\right)$ is:

- (a) 25
- (b) 50
- (c) 75
- (d) 85

Q5. The derivative of $sin(tan^{-1}e^{2x})$ with respect of *x* is:

(a)
$$\frac{2e^{2x}\sin(tan^{-1}e^{2x})}{1+e^{4x}}$$

(b)
$$\frac{2e^{2x}\cos(tan^{-1}e^{2x})}{1+e^{4x}}$$

(c)
$$\frac{2e^{2x}\sin(tan^{-1}e^{2x})}{1+e^{x^2}}$$

(d)
$$\frac{2e^{2x}\cos(tan^{-1}e^{2x})}{1+e^{2x}}$$

- Q6. If B is a non-singular 4×4 matrix and A is its adjoint such that |A| = 125, then |B| is (a) 5
 - (b) 25
 - (c) 125

(d) 625

- Q7. If A and B are square matrices of order 3 such that |A| = -1, |B| = 3 then |3AB| is:
 - (a) 9
 - (b) 81
 - (c) 27
 - (d) 81
- Q8. Corner points of a feasible bounded region are (0, 10), (4, 2), (3, 7) and (10, 6). Maximum value 50 of objective function z = ax + by occurs at two points (0, 10) and (10, 6). The value of a and b are:
 - (a) a = 5, b = 2 (b) a = 4, b = 5
 - (c) a = 2, b = 5
 - (d) a = 5, b = 3
- Q9. The vertices of a closed convex polygon representing the feasible region of the LPP with objective function z = 5x + 3y are (0, 0) (3, 1), (1, 3) and (0, 2). The maximum value of z is
 - (a) 6
 - (b) 18
 - (c) 14
 - (d) 15
- Q10. The general solution of the differential equation $xdy + (y e^x)dx = 0$ is: (a) $e^{xy} + e^x = C$, Where C is constant of integration
 - (b) $\frac{x^2}{2} + xy e^x = C$, Where C is constant of integration
 - (c) $\frac{x^2}{2} + \frac{y^2}{2} e^x = C$, Where C is constant of integration
 - (d) $xy e^x = C$, Where C is constant of integration

Solutions:

S1. Ans. (a)

Sol. Given equations of lines are

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}$$
 and $\frac{x-3}{4} = \frac{y-3}{6} = \frac{z+5}{12}$

Here

 $\frac{2}{4} = \frac{3}{6} = \frac{6}{12} = \frac{1}{2}$. So, given lines are parallel.

Shortest distance between lines = $\left| \frac{\vec{b} \times (\vec{a_2} - \vec{a_1})}{|\vec{b}|} \right|$

Here

 $\overrightarrow{a_1} = \hat{\imath} + 2\hat{\jmath} - 4\hat{k}, \overrightarrow{a_2} = 3\hat{\imath} + 3\hat{\jmath} - 5\hat{k}$

 $(\overrightarrow{a_2} - \overrightarrow{a_1}) = (3\hat{\imath} + 3\hat{\jmath} - 5\hat{k}) - (\hat{\imath} + 2\hat{\jmath} - 4\hat{k}) = 2\hat{\imath} + \hat{\jmath} - \hat{k}$ $\vec{b} = 2\hat{\imath} + 3\hat{\jmath} + 6\hat{k}$ $|\vec{b}| = \sqrt{4+9+36} = 7$ Now, distance = $\left|\frac{(2\hat{\iota}+3\hat{\jmath}+6\hat{k})\times(2\hat{\iota}+\hat{\jmath}-\hat{k})}{7}\right|$ $= \left| \frac{-9\hat{\iota} + 14\hat{\jmath} - 4\hat{k}}{7} \right| = \frac{\sqrt{293}}{7}$ S2. Ans. (a) Sol. Given vectors are $\vec{a} = 2\hat{\imath} + \lambda\hat{\jmath} + \hat{k}$ and $\vec{b} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ The vectors are perpendicular, then $\vec{a}.\vec{b} = (2\hat{\imath} + \lambda\hat{\jmath} + \hat{k}).(\hat{\imath} - 2\hat{\jmath} + 3\hat{k}) = 0$ $2-2\lambda+3=0$ $\lambda = \frac{5}{2}$ Ans. (c) S3. Sol. Given $\int_{-\pi}^{\cdot} (x^5 + x^3 + x + 2) \, dx$ $= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^5 + x^3 + x) \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \, dx$ = 0 + $\{2x\}_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ {Since $f(x) = x^5 + x^3 + x$ is an odd function} $=2\left\{\frac{\pi}{2}+\frac{\pi}{2}\right\}=2\pi$ Ans. (c) S4. Sol. Given function is $f(x) = \left(x^2 + \frac{250}{x}\right)$ $f'(x) = 2x - \frac{250}{x^2} = \frac{2x^3 - 250}{x^2}$ f'(x) = 0 $\frac{2x^3 - 250}{x^2} = 0$ $2x^3-250=0 \Rightarrow x^3=125 \Rightarrow x=5$ Now minimum value = $(5)^2 + \frac{250}{5} = 25 + 50 = 75$ S5. (b) Sol. Given $\sin(\tan^{-1}e^{2x})$ d. w. r. to *x*, $\frac{d}{dx}[\sin(\tan^{-1}e^{2x})] = \cos(\tan^{-1}e^{2x}) \times \frac{d}{dx}(\tan^{-1}e^{2x})$ $= \cos(\tan^{-1} e^{2x}) \times \frac{1}{1 + (e^{2x})^2} \times 2e^{2x}$ $= \frac{2e^{2x} \cos(\tan^{-1} e^{2x})}{1 + e^{4x}}$

S6. Ans. (a) Sol. Given A = adj(B) & |A| = 125|A| = |adj(B)|We have $|adj(B)| = |B|^{4-1} = |B|^3$ $|A| = |B|^3$ $|B| = |A|^{\frac{1}{3}} = (125)^{\frac{1}{3}} = 5$ S7. Ans. (b) Sol. Let A and B be square matrices of order 3 such that |A| = -1, |B| = 3Now $|3AB| = 3^{3}|A||B| = 27 \times (-1) \times 3 = -81$ S8. Ans. (c) Sol. Given points are (0, 10), (4, 2), (3, 7) and (10, 6). Also given maximum value of z is 50 which occurs at (0, 10) & (10, 6), then we have a(0) + b(10) = a(10) + b(6) = 5010b = 10a + 6b = 50If 10b = 50 $\Rightarrow b = 5$ $10a + 6b = 50 \Rightarrow 10a + 6 \times 5 = 50$ 10a = 20a = 2S9. And. (b) Sol. z(0,0) = 0z(3,1) = 5.3 + 3.1 = 18z(1,3) = 5.1 + 3.3 = 14z(0,2) = 5.0 + 3.2 = 6So *z_{max}* is 18 at (3, 1) S10. Ans. (d) Sol. Given $xdy + (y - e^x)dx = 0$ $x\frac{dy}{dx} + y - e^x = 0$ $\frac{dy}{dx} + \frac{y}{x} = \frac{e^x}{x}$ Integrating factor = $e^{\int Pdx} = e^{\int \frac{dx}{x}} = e^{\log x} = x$ Solution is $y \times x = \int \frac{e^x}{x} \times x \, dx = e^x + C$ $xy = e^x + C \Rightarrow xy - e^x = C$